Acta Cryst. (1961). 14, 1084
A note on the structure of $\mathbf{Z r}_{2}$ Co.* By D. M. BAmey and J. F. Smith, Institute for Atomic Research and Department of Chemistry, Iowa State University, Ames, Iowa, U.S.A.
(Received 14 April 1961 and in revised form 26 May 1961)

Weissenberg and precession diffraction data from a single crystal of Zr_{2} Co were found to corroborate the Strukturbericht Type $\mathrm{Cl} 6\left(\mathrm{CuAl}_{2}\right)$ structure (Pearson, 1958) reported by Nevitt \& Downey (1961):

Space group $D_{4 h}^{18}-I 4 / \mathrm{mcm}$,

$$
\begin{aligned}
& 4 \mathrm{Co} \text { at }\left(0,0,0 ; \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) \pm\left(0,0, \frac{1}{4}\right) \\
& 8 \mathrm{Zr} \text { at }\left(0,0,0 ; \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) \pm\left(x, \frac{1}{2}+x, 0 ; \frac{1}{2}+x, \bar{x}, 0\right) .
\end{aligned}
$$

Eighteen ($h 0 l$) reflections were used with a least-squares program to determine the single structural parameter as $x=0 \cdot 1679 \pm 0 \cdot 0019$. Extrapolation of spacings obtained from Debye-Scherrer patterns against the Nelson-Riley function (1945) resulted in the tetragonal lattice parameters: $a_{0}=6.363 \AA$ and $c_{0}=5 \cdot 469 \AA$.

Table 1. Comparison of observed and calculated structure factors for $\mathrm{Zr}_{2} \mathrm{Co}$

$h 0 l$	$\left\|F_{o}\right\|$	F_{c}	$h 0 l$	$\mid F_{o}!$	F_{c}
002	$41 \cdot 0$	$+43 \cdot 2$	402	$40 \cdot 8$	$-37 \cdot 0$
004	$60 \cdot 6$	$+61 \cdot 6$	404	$4 \cdot 8$	$-6 \cdot 6$
006	$22 \cdot 8$	$+24 \cdot 4$	406	$20 \cdot 6$	$-23 \cdot 4$
200	$12 \cdot 8$	$-12 \cdot 2$	600	$53 \cdot 4$	$+51 \cdot 4$
202	$57 \cdot 0$	$-48 \cdot 2$	602	$27 \cdot 0$	$+26 \cdot 0$
204	$7 \cdot 6$	$-9 \cdot 0$	604	$37 \cdot 6$	$+41 \cdot 8$
206	$26 \cdot 2$	$-27 \cdot 2$	800	$9 \cdot 0$	$-8 \cdot 0$
400	$4 \cdot 8$	$-8 \cdot 2$	802	$20 \cdot 6$	$-25 \cdot 0$

The ($h 0 l$) intensities were visually estimated from a series of timed exposures of precession patterns obtained with Mo $K \alpha$ radiation. Lorentz and polarization corrections were made in the manner of Lu (1943), and absorption corrections were made in the manner of Bradley (1935) with the approximation of cylindrical symmetry for the needle-shaped crystal. The scattering factors of Thomas \& Umeda (1957) were modified for dispersion

[^0]corrections in the manner of Dauben \& Templeton (1955), and the structure was refined on an IBM-650 with the least-squares program of Senko as modified by Fitzwater (1958). A comparison of observed and calculated structure factors per unit formula is shown in Table l. The tabulated values give rise to the discrepancy indices:
and $\quad R_{2}=\Sigma\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \Sigma F_{0}{ }^{2}=0.009$.
Isotropic temperature factors, $B_{\mathrm{Co}}=4.08 \AA^{2}$ and $B_{\mathrm{Zr}}=$ $3.06 \AA^{2}$, were obtained and are rather large. On this basis one would expect appreciable vibrational amplitudes in the compound with a relatively high value for the entropy of formation. No thermodynamic data are available for corroboration. However, it may be noted that the temperature factors for the isostructural compound, $\mathrm{Zr}_{2} \mathrm{Ni}$, (Kirkpatrick, Bailey \& Smith, 1961) are of comparable magnitude.

References

Bradley, A. J. (1935). Proc. Phys. Soc. 47, 879.
Dauben, C. H. \& Templeton, D. H. (1955). Acta Cryst. 8, 841.
Fitzwater, D. R. (1958). Unpublished Ph.D. Thesis. Iowa State University, Ames, Iowa.
Kirepatrick, M. E., Bailey, D. M. \& Smith, J. F. (1961). Acta Cryst. To be published.
Lu, C. S. (1943). Rev. Sci. Instrum. 14, 331.
Nelson, J. B. \& Rmey, D. P. (1945). Proc. Phys. Soc. 57, 160.
Nevitt, M. V. \& Downey, J. W. (1961). Trans. Amer. Inst. Min. (Metall.) Engrs. To be published.
Pearson, W. B. (1958). Handbook of Lattice Spacings and Structures of Metals and Alloys, p. 99. New York: Pergamon.
Thomas, L. H. \& Umeda, K. (1957). J. Chem. Phys. 26, 293.

Acta Cryst. (1961). 14, 1084

The crystal structure of $\mathrm{Ce}_{7} \mathrm{Ni}_{3}{ }^{*}$ * By R. B. Roof, Jr., Allen C. Larson and Don T. Cromer, University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico, U.S. A.
(Received 25 January 1961)

Vogel (1947), in a study of the $\mathrm{Ce}-\mathrm{Ni}$ phase diagram, reported the existence of six binary compounds in this system. Of these, CeNi_{3} and CeNi_{4} were listed as having uncertain compositions. The existence of CeNi_{3} has been verified (Cromer \& Olsen, 1959), and what was thought to be CeNi_{4} has been shown to be $\mathrm{Ce}_{2} \mathrm{Ni}_{7}$ (Cromer \& Larson, 1959). The most Ce-rich compound was reported

[^1]Table 1. Final least-squares parameters for $\mathrm{Ce}_{7} \mathrm{Ni}_{3}$

	Position	x	z	$B\left(\AA^{2}\right)$
Ce_{1}	$2(b)$	$1 / 3$	0.7888 ± 0.0024	1.87 ± 0.24
Ce_{2}	$6(c)$	0.1250 ± 0.0005	0.0	1.52 ± 0.14
Ce	$6(c)$	0.5391 ± 0.0005	0.8011 ± 0.0012	1.85 ± 0.14
Ni	$6(c)$	0.8118 ± 0.0011	0.0496 ± 0.0026	1.76 ± 0.32

by Vogel to be $\mathrm{Ce}_{3} \mathrm{Ni}$. We find this compound to be $\mathrm{Ce}_{7} \mathrm{Ni}_{3}$. In attempting to prepare $\mathrm{Ce}_{3} \mathrm{Ni}$, Coffinberry (1960) was

Table 2. Observed and calculated structure factors for $\mathrm{Ce}_{7} \mathrm{Ni}_{3}$
If F_{o} is negative the minus sign should be interpreted as "less than"

	$h 0 l$		h	F_{0}	F_{c}	h	F_{0}	F_{c}	h	F_{0}	F_{c}
h	F_{o}	F_{c}	5	112	94	4	149	123	6	-44	7
	$t=0$		6	36	34	5	90	86	7	83	71
	$\underline{=}$		8	84	68	6	44	52			
2	25	17	8	120	107	7	-38	10			
3	216	216	9	84	68	8	-41	20		$l=7$	
4	106	98	10	41	45	9	44	45	0	-44	20
5	176	156				10	46	46	2	32	38
6	-31	15							3	45	42
7	-34	15		$l=5$					4	55	56
8	36	36	1	50	44		$l=2$		5	63	69
9	98	103	2	95	78	0	259	269			
10	73	70	3	-36	28	1	129	116			
11	37	32	4	63	72	2	108	95		$l=8$	
			5	212	236	3	- 21	22	0	55	72
			6	-37	15	4	89	78	1	-44	12
	$l=1$		7	65	61	5	111	103	2	-44	22
2	79	87	8	37	49	6	26	103 29	3	-43	8
3	299	300	9	-33	23	7	40	53	4	-42	16
4	139	140				8	85	85	5	41	49
5	328	317		$l=6$		9	-44	27			
6	144	141		$l=6$		10	32	31			
7	88	91	0	187	192						
8	74	71	1	92	79					hhl	
9	47	54	2	106	89		$l=3$			$l=0$	
10	122	130	3	92	76	0	31	35	1	28	31
11	51	65	4	-37	31 120	2	128	105	2	327	371
			5	124	120	3	94	86	3	366	387
			6	46	49	4	161	132	4	366 20	-38
	$l=2$		7	36	44	5	134	121	4	20 273	32 271
0	167	162	8	85	79	6	40	41	6	60	65
1	282	269				7	-41	26			
2	309	291		$l=7$		8	-43	7		$l=2$	
3	120	130	1	-37	20	9	45	40		$l=2$	
4	121	111	2	-129	115	10	72	69	0 1	182	
5	139	126	3	138	140				1	127 33	116 43
6	41	48	4	51	53		$l=4$		2	33 102	43 102
7	79 177	92 183	5	35	45	0	115	106	4	51	13
8 9	177 38	183 48	6	81	90	1	-36	8	5	64	59
10	38 47	48 47				2	102	86	6	22	23
11	49	57		$l=8$		3	-38	11			
	4	57	0	84	84	4	28	36		$l=4$	
			1	76	72	5	50	69	0		
	$l=3$		2	75	62	6	30	$\begin{array}{r}37 \\ \hline\end{array}$	1	472 -27	448 8
1	35	35				7	137	127	2	201	203
2	187	176							3	259	224
3	324	331					$l=5$		4	-31	27
4	113	115		$h \mathrm{I} l$		0	50	44	5	158	172
5	118	113		$l=0$		2	195	185	6	49	44
6	184	183	2		159	3	29	43			
7	36	51	3	121 -24	159 9	4	-41	20		$l=6$	
8	54	62	4	-24 40	51	5	-42	17			
9	47	51	4 5	40 -31	51 18	6	31	35	0 1	221	192 43
10	45	53	6	- 56	58	7	-44	9	2	31 50	43 60
11	51	75	7	182	201				3	131	141
			8	41	46		$l=6$		4	37	45
	$l=4$		9	31	26	0	87	79	5	93	92
0	416	448	10	-45	20	1	31	43			
1	104	106				2	93	87		$l=8$	
2	105	91		$l=1$		3	-43	14	0	86	84
3	107	100	2	267	284	4	31	40	1	-28	12
4	69	66	3	115	106	5	-44	31	2	82	53

unable to obtain a single phase at $25 \mathrm{at} . \% \mathrm{Ni}$. A single phase was not obtained until the alloy contained ca. 30 at. \% Ni.

Single crystals of the phase in question were obtained
from an alloy containing $30.8 \mathrm{at} . \%$ Ni.* This alloy was

* At the time this alloy was made the compound was thought to be $\mathrm{Ce}_{9} \mathrm{Ni}_{4}$; hence the composition $30 \cdot 8 \mathrm{at} . \% \mathrm{Ni}$.

(a)

(b)

Fig. 1. (a) The structure in projection down the c axis showing the polyhedron about Ce_{1}. (b) The structure in projection down the b axis showing, from left to right, the polyhedra about $\mathrm{Ni}, \mathrm{Ce}_{2}$ and Ce_{3}.

The large open circles are Ce_{1}, the dotted circles are Ce_{2}, the lined circles are Ce_{3} and the small open circles are Ni atoms. The z and y coordinates are given.
arc melted and then heat treated in an evacuated quartz tube for about two months at $450{ }^{\circ} \mathrm{C}$. Because the alloy is slowly oxidized by air, fragments were sealed in thin pyrex capillaries for X-ray examination. Using Mo $K \alpha$ X-rays ($\lambda=0.7107 \AA$) and a precession camera, the crystals were found to be hexagonal with $a=9.92 \pm 0.02$ and $c=6.33 \pm 0.02 \AA$. With two $\mathrm{Ce}_{7} \mathrm{Ni}_{3}$ per unit cell the calculated density is $7.12 \mathrm{~g} . \mathrm{cm} .^{-3}$, and the measured density of the gross alloy was $7 \cdot 12$ g.cm. ${ }^{-3}$. Reflections of type $h h l$ with $l=2 n+1$ were systematically absent. Thus the space group is $P 6_{3} m c, P \overline{6} 2 c$ or $P 6_{3} / m m c$. For intensity data, sets of timed exposures for each of the levels $h 0 l, h h l$ and $h 1 l$ were made with a precession camera and Mo $K \alpha$ radiation. Intensities were estimated visually by comparison with a series of spots of known relative intensity. $L p$ corrections (Waser, 1951) were computed with an IBM 704. No absorption corrections were made.

Considerations of atomic volumes had indicated that the most likely formula of the compound was $\mathrm{Ce}_{7} \mathrm{Ni}_{3}$. An $h 0 l$ Patterson projection was computed. Inspection of this Patterson quickly showed that the space group could not be $P 6_{3} / m m c$, and a tentative structure was deduced by using space group $P 6_{3} m c$. It was then realized that the compound is isostructural with the $\mathrm{Th}_{7} M_{3}$ compounds described by Florio et al. (1956).

The structure was refined by least-squares using an IBM-704. Separate scale factors for each of the three reciprocal lattice levels and individual isotropic temperature factors were used as parameters in addition to the position parameters. The full matrix was used to determine parameter shifts and standard deviations. Form factors were used in functional form with the parameters given by Forsyth \& Wells (1959). $P 6_{3} m c$ is a polar space group, thus the value of one z parameter is arbitrary. The z of Ce_{2} was, therefore, held fixed at zero. The results of the least-squares calculations are given in Table l. These values may be compared with those of Florio et al. by adding $\frac{1}{4}$ to the present z parameters. The list of observed and calculated structure factors is given in Table 2. With unobserved reflections omitted, the overall value of R is $9 \cdot 1 \%$. For the levels $h 0 l, h h l$ and $h 1 l, R$ is respectively $7 \cdot 7,9 \cdot 1$ and $11 \cdot 7 \%$.
The interatomic distances are given in Table 3. The atoms listed are those which satisfy the definition of a neighbor given by Frank \& Kasper (1958). The Ni atom has nine Ce neighbors forming a polyhedron with 14 three-sided faces. The six closest atoms are at the corners of a distorted trigonal prism, and the other three atoms lie outward from the rectangular faces of this prism. Each Ce atom has 15 neighbors. Ce_{1} has three Ni and 12 Ce neighbors which form a polyhedron with 26 three-sided

Table 3. Interatomic distances in $\mathrm{Ce}_{7} \mathrm{Ni}_{3}$ The numerals in parentheses denote the number of crystallographically equivalent distances. The standard deviation of these distances is about $0.025 \AA$.

$\mathrm{Ce}_{1}-\mathrm{Ni}$	(3)	$2.92 \AA$	Ce_{3}-Ni	(2)	2.83 A
$-\mathrm{Ce}_{2}$	(3)	$3 \cdot 82$	$-\mathrm{Ni}$	(2)	3.53
$-\mathrm{Ce}_{3}$	(3)	$3 \cdot 54$	$-\mathrm{Ce}_{1}$		$3 \cdot 54$
$-\mathrm{Ce}_{3}$	(3)	3.79	$-\mathrm{Ce}_{1}$		$3 \cdot 79$
$-\mathrm{Ce}_{3}$	(3)	3.91	$-\mathrm{Ce}_{1}$		$3 \cdot 91$
			$-\mathrm{Ce}_{2}$	(2)	$3 \cdot 66$
			$-\mathrm{Ce}_{2}$	(2)	$3 \cdot 77$
$\mathrm{Ce}_{2}-\mathrm{Ni}$	(2)	$2 \cdot 87$	$-\mathrm{Ce}_{3}$	(2)	$3 \cdot 44$
-Ni		3.05	$-\mathrm{Ce}_{3}$	(2)	$3 \cdot 80$
-Ni		$3 \cdot 64$			
$-\mathrm{Ce}_{1}$		$3 \cdot 82$	$\mathrm{Ni}-\mathrm{Ce}_{1}$		2.92
$-\mathrm{Ce}_{2}$	(2)	3.72	$-\mathrm{Ce}_{2}$	(2)	$2 \cdot 87$
$-\mathrm{Ce}_{2}$	(4)	$3 \cdot 82$	$-\mathrm{Ce}_{2}$		3.05
$-\mathrm{Ce}_{3}$	(2)	$3 \cdot 66$	$-\mathrm{Ce}_{2}$		$3 \cdot 64$
$-\mathrm{Ce}_{3}$	(2)	$3 \cdot 77$	$-\mathrm{Ce}_{3}$	(2)	$2 \cdot 83$
			$-\mathrm{Ce}_{3}$	(2)	3.53

faces. Ce_{3} has four Ni and 11 Ce neighbors also forming a polyhedron with 26 three-sided faces but different from that about $\mathrm{Ce}_{1} . \mathrm{Ce}_{2}$ has four Ni and 11 Ce neighbors which form a polyhedron having 22 three-sided faces and two four-sided faces. These polyhedra are outlined in Fig. 1. All of the edges of the convex polyhedra about the Ni atom and Ce_{2} join common neighbors but this is not the case for Ce_{1} and Ce_{3}.

In the paper by Florio et al. (1956), Table 1, which lists the interatomic distances in $\mathrm{Th}_{7} \mathrm{Fe}_{3}$, is in error with respect to both the distance given and the identification of the neighbors. The neighbors in $\mathrm{Th}_{7} \mathrm{Fe}_{3}$ correspond with those given in our Table 3, and the actual distances, in most cases, differ by about $0.05 \AA$.

We wish to thank V.O. Struebing and A.S.Coffinberry for preparing and heat treating the specimen.

References

Coffinberry, A. S. (1960). Private communication.
Cromer, D. T. \& Larson, A. C. (1959). Acta Cryst. 12, 855.

Cromer, D. T. \& Olsen, C. E. (1959). Acta Cryst. 12, 689.

Florio, J. V., Baenziger, N. C. \& Rundle, R. E. (1956). Acta Cryst. 9, 367.
Forsyth, J. B. \& Wells, M. (1959). Acta Cryst. 12, 412.
Frank, F. C. \& Kasper, J. S. (1958). Acta Cryst. 11, 184.

Vogel, R. (1947). Metallforschung, Stuttgart, 2, 97.
Waser, J. (1951). Rev. Sci. Instrum. 22, 563.

Acta Cryst. (1961). 14, 1087
On the nature of the omega phase in quenched titanium alloys. By Ju. A. Bagarjatskid, G. I. Nosova and T. V. Tagunova, Central Scientific Research Institute for Ferrous Metallurgy, 23 Radio Street, Moscow, $U S S R$
(Received 21 January 1961)

There was a time when the crystal structure of the omega phase in titanium alloys was the subject of some doubt (Silcock, Davies \& Hardy, 1955; Bagarjatskij, Tagunova \& Nosova, 1955; Yoshida, 1956; Austin \& Doig, 1957;

Spachner, 1958), but it has now been established (Bagarjatskij \& Nosova, 1958; Silcock, 1958). The omega phase has a hexagonal lattice with $c / a=0.612-0.613$ in Ti-base alloys (Silcock et al., 1955; Bagarjatskij et al., 1955;

[^0]: * Contribution No. 1015. Work was performed in the Ames Laboratory of the U.S. Atomic Energy Commission.

[^1]: * Work performed under the auspices of the United States Atomic Energy Commission.

